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1  | INTRODUC TION

The shared evolutionary history of closely related species often im-
plies the trait similarity among them, a pattern referred to as ‘phylo-
genetic signal’ (Blomberg et al., 2003; Felsenstein, 1985; Pagel, 1999). 
Many phylogenetic comparative methods (PCMs) seek to address 
the non-independence of species' traits (Felsenstein, 1985; Harvey 
& Pagel,  1991) in their analytic framing, by conditioning data on 
the phylogenetic relatedness among observations (Adams,  2014b; 
Adams & Collyer, 2018; Beaulieu et al., 2012; Garland & Ives, 2000; 
Grafen,  1989; Martins & Hansen,  1997; O'Meara et  al.,  2006; 
Rohlf,  2001). Indeed, under numerous evolutionary models, phy-
logenetic signal is expected, as stochastic character change along 

the hierarchical structure of the tree of life generates trait covari-
ation among taxa (Blomberg et al., 2003; Felsenstein, 1985; Revell 
et al., 2008). Quantifying and comparing phylogenetic signal among 
traits, however, remains quite challenging.

Several analytical tools have been developed to quantify 
phylogenetic signal in phenotypic datasets (Abouheif,  1999; 
Adams,  2014a; Blomberg et  al.,  2003; Gittleman & Kot,  1990; 
Klingenberg & Gidaszewski,  2010; Pagel,  1999), and their statisti-
cal properties—namely type I error rates and statistical power—have 
been investigated to determine under what conditions phylogenetic 
signal can be detected (Adams, 2014a; Boettiger et al., 2012; Diniz-
Filho et al., 2012; Molina-Venegas & Rodríguez, 2017; Münkemüller 
et  al.,  2012; Pavoine & Ricotta,  2013; Revell,  2010; Revell 
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Abstract
1.	 Macroevolutionary studies frequently characterize the phylogenetic signal in phe-

notypes; however, analytical tools for comparing the strength of that signal across 
traits remain largely underdeveloped.

2.	 We developed a non-parametric, permutation test for the log-likelihood of an evo-
lutionary model, plus a standardized statistic, Z, from this test, which can be con-
sidered a phylogenetic signal effect size. This statistic can be used in two-sample 
tests to compare the strength of phylogenetic signal for multiple traits.

3.	 We performed simulation experiments that revealed that Z had a linear associa-
tion with Pagel's �, which could be predicted by tree size, plus could be quickly 
interpreted as a hypothesis for phylogenetic signal based on a standard normal 
distribution. We additionally found that the permutation test had greater statisti-
cal power for detecting phylogenetic signal than parametric likelihood ratio tests, 
especially for small trees.

4.	 The analytical framework we present extends the phylogenetic comparative 
methods toolkit, allowing for statistical comparison of phylogenetic signal in mul-
tiple traits. Future studies could also consider this framework for the comparison 
of different evolutionary models, especially in light of different null processes.
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et al., 2008). One of the most widely used methods for character-
izing phylogenetic signal is Pagel's � (Pagel, 1999), which transforms 
the lengths (by compression) of the internal branches of the phy-
logeny, while leaving the tips unaffected, to improve the fit of data 
to the phylogeny via maximum likelihood (Freckleton et  al.,  2002; 
Pagel, 1999). To infer whether phylogenetic signal differs from no 
signal or a Brownian motion (BM) model of evolutionary divergence, 
the observed model fit using �̂ may be statistically compared with 
that using � = 0 or � = 1 via likelihood ratio tests (Bose et al., 2019; 
Cooper et  al.,  2010; Freckleton et  al.,  2002) or confidence limits 
(Vandelook et al., 2019).

Another widely used measure is Blomberg's K (Blomberg 
et al., 2003), which characterizes phylogenetic signal as the ratio of 
observed trait variation to the amount of variation expected under 
BM. Blomberg's K can be treated as a test statistic by using a per-
mutation test to generate its sampling distribution (Adams, 2014a; 
Blomberg et al., 2003) for determining whether significant phyloge-
netic signal is present in data. Both � and K seem intuitive to inter-
pret, as a value of 0 for both corresponds to no phylogenetic signal, 
and a value of 1 corresponds to the amount of phylogenetic signal 
expected under BM. Thus, it is tempting to regard both � and K as 
descriptive statistics (and effect sizes, Münkemüller et al., 2012) that 
measure the relative strength of phylogenetic signal, providing an 
estimate of its magnitude for comparison.

The potential appeal of Pagel's � and Blomberg's K as effect sizes 
is that they provide a basis for interpreting ‘weak’ versus ‘strong’ 
phylogenetic signal; that is, small versus large values of �̂ or K, re-
spectively, in a comparative sense (De Meester et al., 2019; Pintanel 
et  al.,  2019; Su et  al.,  2019). They are also important statistics in 
hypothesis tests. The optimized value of lambda, �̂, is the location 
where the log-likelihood is maximized, and is, therefore, compelling 
for finding the maximum phylogenetic signal in the data, which can 
be deemed ‘significant’ by rejecting the null hypothesis of � = 0 in 
a likelihood ratio test. Although Pagel's � has an upper bound of 1, 
Blomberg's K can measure phylogenetic signal that is greater than 
expected under BM, as it has no upper bound. Blomberg's K—or 
more specifically, the GLS estimation of variance that is a part of its 
calculation—can serve as a test statistic in a permutation test that 
randomizes ‘tip data’ in random permutations. However, K is quite 
sensitive to tree size, exhibits high type II error rates for intermedi-
ate strength of phylogenetic signal, has higher type I error rates than 
likelihood ratio tests based on �̂, and exhibits greater uncertainty for 
strong phylogenetic signals (whereas �̂ has greater uncertainty at in-
termediate phylogenetic signal strength: Münkemüller et al., 2012). 
Both of these statistics offer good support as test statistics for de-
termining whether phylogenetic signal exists in a trait, but they are 
limited for comparing phylogenetic signals between traits.

Here, we present an alternative, standardized effect size calcula-
tion, which can be used in hypothesis tests to compare phylogenetic 
signals for different traits, and which is based on a normalized distri-
bution of random log-likelihoods of a phylogenetic model, generated 
from a model of phylogenetic independence. Much like a likelihood 
ratio test for Pagel's �, this non-parametric approach can assess the 

significance of the observed phylogenetic signal, but unlike the para-
metric test, the standardized location of the observed likelihood can 
be used as an effect size, which can be statistically compared with 
similarly calculated effect sizes to consider hypotheses regarding 
the relative strengths of phylogenetic signal for multiple traits. We 
use simulation experiments to compare this standardized effect size 
to �̂ and K and demonstrate its utility with an empirical example. 
Comprehensively we illustrate that this standardized effect size pro-
vides an additional necessary tool to the phylogenetic comparative 
toolkit.

2  | CONCEPTUAL DE VELOPMENT

A hypothesis test for phylogenetic signal involves calculating the 
variance among taxa trait values, conditioned on phylogenetic co-
variances (evolutionary rates) and comparing this variance to a 
variance that assumes phylogenetic independence. This can be ap-
preciated by the GLS log-likelihood equation for a BM phylogenetic 
model of a univariate trait (Blomberg et al., 2003; Freckleton, 2012; 
Freckleton et al., 2002; Garland & Ives, 2000):

where, y is a vector of N trait values, y − E (y) is a vector of phylogenetic 
residuals, V is an N × N phylogenetic covariance matrix, equal to �2C, 
and |V| represents its determinant. The N × N covariance matrix, C, is 
a matrix of phylogenetic variances along the diagonal, and covariances 
that are proportional to or exactly the covariances from a BM model 
of evolution (Revell et al., 2008). The variance (evolutionary rate), �2, is 
calculated as �2 = N−1(y−E(y))TC−1(y − E(y)), where T represents vec-
tor transposition. N−1 is used for the maximum likelihood estimate of 
�
2; (N−1)−1 is used in place of N for the restricted maximum likelihood 

(REML) estimator (Freckleton, 2012). The expected value (tree root) is 
computed as E(y) = (1TC−11)−11TC−1

y, where 1 is an N × 1 vector of 
1s. Because V = �

2C, Equation 1 can be expanded, that is,

This expansion helps to elucidate the portions of the log-
likelihood equation that are constant when comparing traits. In 
Equation 2, N

2
log(2�) is a constant and (y − E(y))V−1(y − E(y)) = N for 

any traits and any trees, for a BM model of evolution. We can, there-
fore, update Equation 2:

Thus, Equation 2 can be simplified:

(1)logℒ(�|V) = −
1

2
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where C is a constant for all of the parts in Equation 1 that would not 
be changed by changing C. Equation 3 helps one appreciate that in a 
likelihood ratio test to compare estimates of evolutionary rates (e.g. 
�
2
�=0

 and �2
�̂
), N and C are the same in the two likelihood calculations; the 

only parts that change are C (as a proportional change in covariances, 
based on �̂) and the values of �2, as a result of C. Therefore, a likelihood 
ratio test is a direct comparison of evolutionary rates.

Pagel's � is a scaling parameter by which the covariances (i.e. the 
off-diagonals) of C are multiplied (Pagel, 1999). A value of 0 changes 
all covariances to 0 (a star phylogeny or phylogenetic independence), 
and a value of 1 does not change the covariances from those ex-
pected by a BM model of evolution. (If � = 0 and the tree is ultramet-
ric, C is a diagonal matrix proportional to an N × N identity matrix, 
I  . It is convenient in this case to refer to I rather than C as a model 
of evolutionary independence because the lengths of branches in a 
star phylogeny—all equal—are inconsequential in estimation of the 
trait variance.) The value of � that minimizes log�2 + 1

N
log |C| max-

imizes the log-likelihood. This value can be found for the interval 
between 0 and 1, yielding the optimized value, �̂. In a likelihood ratio 
test, the log-likelihood at �̂ can be compared with the log-likelihood 
found at � = 0; rejection of the null hypothesis indicates ‘significant’ 
phylogenetic signal. Likelihood ratio tests could also be used to ex-
plicitly test �̂ against a model of pure BM (� = 1).

By contrast, Blomberg's K finds (y − E(y)) and calculates variance 
(mean-squared error) from these residuals two different ways: 
MSE0 = (N−1)−1(y−E(y))T (y − E(y)) and MSE = (N−1)−1(y−E(y))TC−1(y − E(y)), 
where C is typically the untransformed covariance matrix based on a 
BM model of evolutionary divergence (� = 1). The only difference 
between MSE and �2 in Equation 2 is the use of the REML estimator 
(N − 1 degrees of freedom) for MSE. MSE0, however, ignores phyloge-
netic covariances in its estimation (does not correct for phylogenetic 
relatedness). Blomberg's K is the ratio, MSE0

MSE
, divided by its expectation 

under BM for a given phylogeny; that is, K = observed
(
MSE0

MSE

)
∕expected

(
MSE0

MSE

)
 

(Blomberg et al., 2003). This equation could be equivalently calcu-
lated (Revell et al., 2008), as

where trace is the sum of diagonal elements, and we use the subscript, 
BM, to indicate this is an untransformed (� = 1) version of C. Typically, 
CBM is also used in the calculation of (y−E(y))TC−1(y − E(y)), but this 
need not be the case, as least for considering K as a test statistic rather 
than a descriptive statistic. K will tend toward 0 if there is no phyloge-
netic signal, and tend toward or exceed 1 if there is. Whereas a like-
lihood ratio test can be used for Pagel's �, a permutation test (which 
randomizes the trait data across the tips of the phylogeny) is used 
to generate random distributions of MSE (e.g. Blomberg et al., 2003) 
or K (e.g. Adams, 2014a). A p-value is found as the percentile of the 

observed statistic in its sampling distribution. Because a permutation 
test and likelihood ratio test are non-parametric and parametric solu-
tions for different test statistics, respectively, it might not be surpris-
ing that they could produce different results with respect to the same 
null hypothesis of no phylogenetic signal. However, it is because of 
the potential difference in � values used in calculation of the test sta-
tistics more so than the statistic or method used that different results 
are possible. With the same � used to calculate C, and thus, MSE, the 
two tests should produce similar results. This can be appreciated by 
considering the process that generates variation in the permutation 
test.

Blomberg et al. (2003) proposed that y − E(y) could be replaced 
in Equation 3 by y − �, where � is the ordinary least squares (OLS) 
mean of y. A permutation test that randomizes tip data performed 
with this altered K statistic or MSE produces a distribution of values 
that are perfectly rank correlated because the only random element 
recalculated in each permutation is (y−E(y))TC−1(y − E(y)). (All other 
portions of the K calculation would be constant.) It can be appreci-
ated why Blomberg et al. (2003) suggested MSE as a statistic, and as-
serted that using C that is transformed (e.g. by �̂) would mean having 
greater statistical power to detect phylogenetic signal. It can be seen 
from Equations 3 and 4 that for the same C,

If one optimizes � via maximum likelihood, uses this value to 
transform C, and performs a permutation test on K, using MSE as 
the test statistic, then a test on �̂ and a test on K are commensu-
rate. Furthermore, such a permutation test can be considered a 
non-parametric alternative to a likelihood ratio test. (We provide ad-
ditional empirical detail in Appendix 1 of the Supporting Information 
that confirms rank correlation.)

Randomizing tip data is a simplified form of randomization of 
residuals in a permutation procedure (RRPP). RRPP works best if 
residuals are the most appropriate exchangeable units under the 
null hypothesis (Adams & Collyer, 2018; Commenges, 2003). RRPP 
is a process that randomizes null model residuals and adds them to 
null model fitted values in every random permutation to create ran-
dom pseudodata used to fit alternative models. If the null hypoth-
esis is phylogenetic independence, a star phylogeny is assumed, 
C ∝ I, E(y) = �, the OLS mean, y − E (y) are the OLS residuals, and 
random outcomes of y∗ = E(y) + (y−E(y))∗, where ∗ indicates ran-
domization, are the pseudodata produced in each permutation. If 
E(y) = �, then randomizing residuals is the same as randomizing tip 
data (the root and data mean are the same). This process preserves 
first- and second-moment exchangeability; that is, the OLS mean 
and variance of the trait are constant across random permutations. 
(If phylogenetic independence is not assumed, RRPP still functions 
the same, but has a GLS solution with second-moment exchange-
ability only.) It is important to understand that when the portions of 
the log-likelihood expression for phylogenetic independence (sum-
marized as C in Equation 3) are held constant, p-values found from 

(3)logℒ(�|V) = −
N

2

[
log�2 +

1

N
log |C| + C

]
,

(4)K =
(y−E(y))T (y − E(y))

(y−E(y))TC−1(y − E(y))
∕

trace(CBM) − N(1TC−1
BM

1)−1

N − 1
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log�̂
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the sampling distributions of either component of Equation 5, the 
log-likelihood, or the likelihood ratio statistic, − 2

(
logℒI − logℒ∗

C

)
, 

will be exactly the same (as logℒI is also constant in every random 
permutation). Therefore, a permutation test with RRPP is a non-
parametric application of the likelihood ratio statistic in a hypothesis 
test (Potter, 2005), which does not rely on a mixture of parametric 
probability distributions as a proxy of the true sampling distribu-
tion (Molenberghs & Verbeke, 2007; Self & Liang, 1987). However, 
it remains to be seen if a permutation test, using the log-likelihood 
statistic and RRPP, is as reliable as a parametric likelihood ratio test.

Assuming a comparable tree transformation, Pagel's � and 
Blomberg's K can be considered two phylogenetic signal effect sizes 
(Münkemüller et  al.,  2012), but a test of phylogenetic signal, as 
demonstrated above, is more explicitly an assessment of the rarity of 
the observed log�2 in a hypothetical distribution of log�2, if λ = 0 is 
the null model process. This process can be applied with RRPP and a 
sampling distribution of either �2, − N

2
log�2, or logℒC can be gener-

ated, and all would provide the same p-values for the same RRPP 
permutations (see Appendix 1 of the Supporting Information for an 
example of this outcome). However, sampling distributions from per-
mutation tests do not need to be a means to an end, a tool to merely 
find a p-value. The location of the observed statistic in its sampling 
distribution can also be considered an effect size (Adams & 
Collyer, 2016, 2018, 2019; Collyer et al., 2015). From, Equation 3, 
either the non-constant portion of the log-likelihood equation, 

−

(
log�2 +

1

N
log |C|

)
, or the log-likelihood itself, are good statistics 

for estimating effect sizes (Equation  3 demonstrates that the log-

likelihood is a linear transformation of −
(
log�2 +

1

N
log |C|

)
, so effect 

sizes estimated from the RRPP distributions of either will be the 
same. We will henceforth refer to the random forms of logℒC, for 
simplicity.) The location of the observed value in a standardized dis-
tribution of random logℒC outcomes, based on the appropriate null 
hypothesis of phylogenetic independence, provides a standardized 
(statistical) effect size that can be used in comparative tests (Adams 
& Collyer, 2016, 2018, 2019; Collyer et al., 2015).

Letting � = f
(
logℒC

)
, where f  represents a normalizing function 

(if random logℒC are not sufficiently normally distributed), the stan-
dardized effect size of phylogenetic signal for a trait is estimated as,

where �̂
�
 is the mean of the sampling distribution and �̂

�
 is the stan-

dard error (the standard deviation of the sampling distribution, not the 
trait). (The ∧ indicates these values are estimated, based on the number 
of random permutations used, which is probably fewer than the finite 
but large possible number of all permutations.) As a standard deviate, 
we would expect correspondence between a p-value estimated from 
the location of Z in a standard normal distribution and the percentile 
of logℒC in its sampling distribution. Therefore, it is obvious that, e.g. 
Z = 2.5 means significant phylogenetic signal and Z = 0.7 means phy-
logenetic signal that is not significant, based on a significance level of 

� = 0.05. More importantly, because sampling distributions are ap-
proximately normal, two effect sizes can be compared in a hypothesis 
test, by finding the two-sample test statistic,

The Z12 statistic can be assumed to follow a standard normal dis-
tribution, meaning a p-value can be obtained for a null hypothesis test 
that the phylogenetic signals for two separate traits are the same. 
There is no explicit expectation that the traits have to come from the 
same phylogeny, but the scope for comparison of traits is something 
that can only be considered by examining the behavior of these effect 
sizes for varied tree sizes and phylogenetic signal strength.

Equation  3 implicitly assumes that the compared traits evolve 
independently, which might be an illogical assumption for traits 
measured on species from the same phylogeny. In such cases, there 
are two options worth considering. First, one could generalize the 
log-likelihood equation (Equation 2) for multivariate data (see, Revell 
& Harmon,  2008) and consider the relative strength of multivari-
ate phylogenetic signal with respect to the univariate signals. This 
is not necessarily a simple generalization, if one allows �̂ to vary 
among traits (requiring p (p − 1) ∕2 covariance matrix estimations 
in the log-likelihood for p traits; see Appendix 2 in the Supporting 
Information for further details). However, one could compare multi-
variate Z-scores between models that assume a common �̂ or allow 
�̂ to vary among traits, as a test of evolutionary independence of 
traits; much like one can compare models with common or separate 
evolutionary rates among traits (see, Adams, 2013). (We provide fur-
ther details for this future research consideration in Appendix 2 of 
the Supporting Information.) Second, one could compare the relative 
strength of phylogenetic signal between principal components of a 
multivariate data set. With this option, the principal components 
would be independent, but one would have to reconcile principal 
component loadings with test results to determine whether suites of 
traits have different phylogenetic signals.

Multivariate considerations are expansive and exceed the scope 
of this paper. However, RRPP is a process that generates sampling dis-
tributions of log-likelihoods in a consistent manner, irrespective of the 
number of traits. Research questions that require multivariate analysis 
should have tractable solutions, provided log-likelihoods can be esti-
mated (residual covariance matrices are not singular). Regarding single 
traits, we perform simulation experiments to determine type I error 
rates, correspondence between hypothesis test outcomes, statistical 
power, and the relationship between effect size and simulated phylo-
genetic strength, below. However, we first provide a simple example 
to help illustrate the purpose of this type of analysis.

2.1 | Illustrative example

As an illustrative example, we simulated two traits on a phylog-
eny (N = 60), one with moderate phylogenetic signal and one with 

(6)Z =

�obs − �̂
�

�̂
�

,

(7)Z12 =

(
�1obs

− �̂
�1

)
−

(
�2obs

− �̂
�2

)

√
�̂
2

�1
+ �̂

2

�2

.
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stronger phylogenetic signal. (Simulation details are explained in 
the next section.) For one variable, X, �̂X = 0.36, and for the other, 
Y, �̂Y = 0.77. We performed RRPP to recalculate the GLS log-
likelihoods (using a covariance matrix for a tree transformed by �̂ 
for each variable), with 10,000 random permutations, each. These 
distributions were normalized (with a Box-Cox transformation) and 
standardized (Figure 1), yielding Z scores of 2.21 and 6.33 standard 
deviations, respectively, each of which was significant at � = 0.05 

(p = 0.0146 for X and p = 0.0001 for Y). Performing parametric likeli-
hood ratio tests with a null model of � = 0 yielded slightly different 
results �2

= 2.07, p = 0. 0750, and 𝜒2
= 25.89, p < 0.0001, for X and 

Y, respectively. The difference, as we show below, is likely due to 
the limited statistical power (type II error) of the parametric likeli-
hood ratio test. We performed a two-sample z-test to compare the 
phylogenetic signal effect sizes; ||ZXY|| = 2.92, p = 0.0018, indicating 
that the phylogenetic signal in Y was significantly larger than in X. 

F I G U R E  1   Plot of phylogenetic tree with x, y values, plus frequency histograms for the RRPP log-likelihood values for two variables, X 
and Y. Vertical lines indicate observed values. In the last panel, histograms have been combined for standardized values
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Comparatively, KX = 0.96 and KY = 1.02, which like �̂ is not as use-
ful for determining a significant difference between phylogenetic 
signals.

3  | SIMUL ATION METHODS AND RESULTS

We examined the behavior of RRPP-based likelihood ratio tests and 
standardized log-likelihood effect size with simulation experiments 
that varied the strength of phylogenetic signal, for various sized 
pure-birth phylogenetic trees. In our simulation experiments, we 
sought to examine the statistical power of likelihood ratio tests with 
RRPP compared to parametric tests, and the relationships between 
effect size, Pagel's �, and Blomberg's K.

3.1 | Simulation methods

Simulating data from a model with known phylogenetic signal is chal-
lenging, as the process requires an a priori definition of phylogenetic 
signal, and there is no guarantee that the process will produce data 
that are similar to the intended effect. It is possible to simulate data 
with an intended �, as this requires merely simulating a tree, rescal-
ing the tree, and simulating BM data on the rescaled tree (see, e.g. 
Adams,  2014a; Molina-Venegas & Rodríguez,  2017). Alternatively, 
a weighted average of data simulated with BM and without BM 
could be used, which Münkemüller et  al.  (2012) described as the 
(simulated) BM strength. However, with either approach, there is 
no guarantee that �̂ will resemble �, especially for small trees (see, 
e.g. Figure 2 of Münkemüller et al., 2012). Furthermore, there is no 
easily conceivable way to simulate data from a model with known 
K. For previous studies that sought to evaluate statistical proper-
ties (type I or type II errors, accuracy, and precision), defining � or a 
weight of BM strength, as simulated, was sufficient for calculating 
summary statistics over many simulation runs with the same input 
value. However, we were more interested in understanding the as-
sociation of simulated phylogenetic signal strength and the effect 
size estimated from the log-likelihood of an evolutionary model, over 
a continuum from � = 0 to 1.

Initial trials to simulate data (sensu Adams,  2014a; Molina-
Venegas & Rodríguez,  2017) from a uniform distribution of � re-
vealed that, especially with smaller trees, distributions of �̂ tended 
to be skewed toward 0 or 1, despite uniform sampling of �. This was 
consistent with the research of Münkemüller et al. (2012). (see, e.g. 
their Figure 2 and their Table 2, which indicates skewing of �̂ to-
ward 0 or 1 for small trees.) Therefore, we used an algorithm to first 
simulate � from a uniform distribution, and then simulate data that 
produced �̂ within 5% of � to assure that there was an approximately 
uniform distribution of �̂ throughout the simulation runs.

We simulated 5,000 pure-birth, ultrametric trees (with a 
branching rate of 0.05) for each of 25:9 sized trees (25,000 trees 
total). All trees were created with the function, pbtree, from the 
phytools R package (Revell,  2010). For each tree, we randomly 

sampled � from a uniform distribution (minimum of 0, maximum of 
0.99), scaled the tree branch lengths by �, and simulated random BM 
data on the transformed tree, using the sim.char function of the 
geiger R package (Harmon et al., 2008). Subsequently, we found 
the maximum likelihood estimate, �̂ (see code in Appendix 3 of the 
Supporting Information) from the data generated. We used an upper 
limit of � = 0.99 because like Cooper et al. (2016), we observed a rare 
but discernible trend for data simulated with � = 1 to not fit as well 
with a BM model of evolutionary divergence as alternative models, 
such as Ornstein Uhlenbeck models (Lande, 1976). By using a cut-off 
of 0.99, instances of �̂ = 1 were still frequent, but anomalies from 
simulating non-BM data were largely mitigated. For every tree we 
simulated, we repeatedly simulated data until we found �̂ within a 
5% interval of �, and then retained the data for analysis.

For every simulated tree and its corresponding data, we per-
formed a parametric likelihood ratio test, with � = 1 (untransformed) 
and � = �̂ (transformed) adjustments of C. We also used RRPP to 
generate distributions of 1,000 random log-likelihoods for each 
tree:data combination, and for both untransformed and transformed 
C matrices, from which the percentile of the observed statistic was 
used to estimate a p-value. The parametric likelihood ratio test 
performed for � = �̂ and the permutation test performed for � = 1 
(null � = 0 in both cases) correspond exactly with the tests typically 
performed for Pagel's � and Blomberg's K, respectively. We verified 
p-values estimated this way were the exact same as using the distri-
bution of random MSE, more typically used for a test of Blomberg's K.

K results and standardized log-likelihood effect sizes were plot-
ted against �̂, with points scaled and hued in association with �̂ to 
visualize patterns. In such plots, points were colored if significant, 
based on the RRPP permutation test, or gray if not significant. We 
anticipated that Z = 1.96 should correspond to the null hypothesis 
rejection limit for a one-tailed test, a line we superimposed into plots 
to visually determine the consistency of effect sizes and hypothesis 
test results. (We expected colored points to lie above this line and 
gray points to lie beneath, if effect sizes reflected hypothesis test 
outcomes.)

Because we had p-values from both parametric and permuta-
tion tests, we could create 2 × 2 tables of hypothesis test outcome 
correspondence, to assess the consistency of parametric and non-
parametric tests. These tables report both the consistencies (para-
metric tests and RRPP tests found same result) and two types of 
inconsistencies: the parametric test finds a significant result but 
RRPP does not, or RRPP finds a significant result, but the parametric 
test does not. The inconsistent results were labeled in plots, along 
with type I error rates (calculated from the frequency of occasions 
that for �̂ ≈ 0, a significant result was observed). Because we had 
5,000 �̂ values, approximately uniform in distribution, we were able 
to estimate statistical power curves as a moving proportion of null 
hypothesis rejections across the landscape of �̂ values. We esti-
mated the proportion of rejections for four test types: parametric/
untransformed, parametric/transformed, RRPP/untransformed, 
and RRPP/transformed. Proportions were estimated by culling data 
by intervals of �̂ and producing a vector of 0s (did not reject null 
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F I G U R E  2   Plots of simulations including relative frequencies of �̂ generated (left column), K tested with � = 1 (middle column), and K 
tested with � = �̂ (right column). Rows separate results by tree size. Points corresponding to non-significant results from permutation tests 
are colored gray; significant results are scaled, colored and hued according to the magnitude of �̂, as in the left column
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hypothesis) and 1s (rejected the null hypothesis), for each test type. 
The means of these vectors were the proportion of tests for which 
the null hypothesis was rejected. We found that an interval length of 
0.1 assured more than 500 values for all interior points (�̂ = 0.1: 0.9), 
and produced rather smooth curves that were qualitatively as infor-
mative as any curves produced with a greater number of intervals.

Additional functions and code for simulation experiments can be 
found in Appendix 3 of the Supporting Information. Several support 
functions from the RRPP R package (Collyer & Adams, 2018) were 
used to create functions to estimate log-likelihoods and effect sizes 
from RRPP distributions. In some initial simulations, we also consid-
ered balanced and pectinate trees. We found no qualitative differ-
ences and simulations could only produce new sets of data on the 
same tree, so we did not consider them further.

3.2 | Simulation results

Figure 2 shows �̂ and K results from simulations, and Figure 3 shows 
Z score results, with corresponding points scaled and hued the same, 
based on the value of �̂ in the first column of Figure  2. The rela-
tive frequencies of �̂ suggested the simulations produced approxi-
mately uniformly distributed phylogenetic signals. A rejection of the 
null hypothesis of no phylogenetic signal (significant phylogenetic 
signal) resulted in points that were colored, with hue changing as �̂ 
increased; non-significant values were gray in color. These figures 
allow for visual clarification of various attributes acquired from the 
simulation runs, such that patterns are easy to interpret. Statistical 
power curves are shown in Figure 4.

Regarding Pagel's � and Blomberg's K, our simulation results 
tracked the results of Münkemüller et  al.  (2012) in one particular 
way (Figure 2). It was possible to simulate larger K values for smaller 
trees, but within any tree size, K tended to be less than 1 except 
for the largest simulated �̂ values. Despite this trend, the hypothesis 
test results using alternative transformations of the C matrix for esti-
mation of MSE as a test statistic for K revealed profound differences. 
In Figure 2, significant or non-significant K values can be found for 
any �̂, if � = 1 is forced in the test statistic, which is the common way 
this test is performed (middle column). The simple act of using � = �̂ 
and MSE as a test statistic (not K) alleviated this concern, and was 
consistent with the assertion of Blomberg et al. (2003) that doing so 
increases statistical power (Figure  4). Forcing � = 1 for hypothesis 
tests of K also elevated type I error rates, but they were still close to 
the nominal � = 0.05 level.

Issues with � forced to be equal to 1 were also revealed by using 
a standardized effect size based on the location of ℒC in its RRPP-
generated sampling distribution. Significant and non-significant re-
sults spanned the entire range of �̂ (Figure 3). These results are not 

surprising, as they do not seek to maximize likelihood, but help to 
confirm that the permutation test with K, using MSE as a test statis-
tic, is flawed (since MSE might not be minimized via a best fit of the 
tree to the comparative data). Furthermore, using Z as an effect size 
if � is forced to equal 1 makes little sense because of its curvilinear 
association with �̂ (Figure 3). However, for cases where � = �̂, both 
the permutation test on the log-likelihood statistic as well as the Z 
score from the RRPP sampling distribution, as an effect size, had sev-
eral desirable attributes.

First, the permutation test for the log-likelihood of the evolu-
tionary model had greater statistical power than the parametric 
likelihood ratio test (Figure  4). A statistical power advantage was 
greatest for smaller trees, and the power curves of the two meth-
ods tended to converge with larger trees. The cases of inconsis-
tent results from the 2 × 2 hypothesis test correspondence tables 
(Figure 3) were always due to the permutation test finding signifi-
cant results when the parametric likelihood ratio test did not, but 
the rate of inconsistencies decreased with increased tree size. (By 
contrast, if � = 1 is forced, the rate of inconsistencies increased with 
tree size.) A likelihood ratio statistic only asymptotically follows a 
�
2 distribution, as N → ∞ (Wilks, 1938), so it is not surprising that a 

parametric likelihood ratio test would have larger type II error rates 
with small tree sizes. Furthermore, the asymptotic null distribution 
for a one-sided likelihood ratio statistic, in which null hypotheses 
are at the limits of the constrained parameter space (� = 0 or � = 1), 
is a mixture of two �2 distributions (Molenberghs & Verbeke, 2007; 
Verbeke & Molenberghs, 2003). Generally, an unconstrained �2 sta-
tistic is reported, but a p-value is considered to be 1/2 of the classical 
�
2 approximation, when mixture proportions are equal. Therefore, a 

tendency toward high statistical power might be expected for traits 
from large trees with likelihood ratio tests. Nonetheless, the statis-
tical power was as good or better with permutation tests in our re-
sults, irrespective of tree size. In addition to having greater statistical 
power, the RRPP sampling distribution allows the standard deviate 
of the observed log-likelihood to be used as an effect size (Z), which 
also has nice attributes.

Second, Z based on a maximum likelihood estimate of � has a lin-
ear association with �̂. The slope of this linear association increases 
with tree size, unfortunately, as it is not possible to disentangle a 
goodness of fit (�2) from the size of a tree. Thus, one might consider 
comparing effect sizes for traits from two vastly different trees with 
caution. The range of simulated Z also increased with phylogenetic 
signal strength and tree size (Figure 3). This result can be explained 
by the fact that for a large value of ̂�, also for a large tree, the breadth 
of possible �2∗ values in RRPP permutations increases, so it is also 
possible to have a larger span of possible Z values.

Third, with � = 0.05, there was a clear demarcation of Z above a 
value of 1.96 corresponding to significant hypothesis test outcomes, 

F I G U R E  3   Plots of Z score simulations for untransformed C (left columns) and transformed C (right column). Points are scaled and colored 
as in Figure 2. Inconsitencies (from a 2 × 2 correspondence table) between parametric likelihood ratio tests (LRT) and RRPP permutation 
tests are noted, as well as type I error rates for �̂ = 0. The dashed line at Z = 1.96 indicates expected separation of significant and non-
significant results, based on a level of significance of � = 0.05
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especially for tests with � = �̂ (Figure 3). This is helpful, as an effect 
size of say, Z = 2.5 reported from an empirical study, indicates sig-
nificant phylogenetic signal. We found sampling distributions to be 
consistently normally distributed (see Figure 1 as an example), espe-
cially for larger trees. Results in Figure 3 (second column) had a dis-
tinction of significant results consistently for Z > 1.96. A reliance on 
the normal distribution of RRPP sampling distributions means that 
two-sample Z statistics are also reliable, and quick interpretation 
of Z = 25 to, e.g. Z = 6, for two traits from the same tree, indicates 
which has greater phylogenetic signal.

Ideally, there would have been no relationship between Z and 
tree size, but such an expectation would be unwarranted, as phylo-
genetic signal is inherently related to the largeness of the phylogeny. 
However, we determined that there was a precise relationship be-
tween tree size and the slope of Z with respect to �̂. The slopes of 
the lines in Figure  3 fit (nearly perfectly) the relationship, 

log
(
Z

�̂

)
=

1

2
logN. Thus, the expected value of Z, given N and �̂ is 

E(Z|N, �̂) = exp
[
1

2
logN + log�̂

]
. One can calculate Z − E(Z|N, �̂) for the 

traits (see Figure 5) that are compared to ascertain if Z is larger (more 
positive) or lesser (more negative) than expected, given the tree size 
and optimized value of �. This adjustment could be seen at best as a 
tool to help understand the multifarious nature of phylogenetic sig-
nal, rather than fix Z for comparative tests. For example, when com-
paring traits from two different trees, more positive values of 
Z − E(Z|N, �̂) might be considered stronger phylogenetic signal, if �̂ 
are comparable.

4  | EMPIRIC AL E X AMPLE

To demonstrate the utility of Z12, we compared Z for two ecologically-
relevant traits in plethodontid salamanders (Figure 6): surface area 

to volume ratios 
(
SA

V

)
 and relative (to snout to vent length) body 

width 
(

BW

SVL

)
 (Baken & Adams, 2019; Baken et al., 2020). For this ex-

ample, surface area to volume ratios and relative body width meas-
ures were obtained from individuals of 305 species, from which 
species means were obtained (Baken & Adams,  2019; Baken 
et al., 2020). A time-dated molecular phylogeny for the group (Bonett 
& Blair, 2017) was pruned to match the species in the phenotypic 
dataset. The phylogenetic signal effect size in each trait was ob-
tained from 10,000 RRPP permutations, using functions described 
in Appendix 3 of the Supporting Information. The absolute value of 
the two-sample effect size (Equation 5) was calculated, as we had no 
a priori expectation of direction in the hypothesis test; i.e. it was 
treated as a two-tailed hypothesis test.

Although both traits contained significant phylogenetic signal 
(Z BW

SVL

= 16.17;p = 0.0001 and Z SA

V

= 21.20;p = 0.0001), a test based 

on Z12 revealed that the degree of phylogenetic signal was signifi-
cantly stronger in SA

V
 (||Z12|| = 7.10; p < 0.0001: Figure  5). 

Biologically, this observation may be interpreted by the fact that 
the tropical species—which form a monophyletic group within 
plethodontids—display greater variation in SA

V
, which covaries 

with disparity in their climatic niches (Baken et al., 2020). Thus, 
greater phylogenetic signal in SA

V
 is to be expected. Coincidentally, 

F I G U R E  4   Statistical power curves for indicated methods: parametric likelihood ratio test (LRT), and RRPP. Whether the C matrix is 
transformed is noted
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�̂ was 0.76 and 0.91, and K was 0.25 and 0.76, for BW
SVL

 and SA
V

, 
respectively.

5  | DISCUSSION

To be able to ask if traits differ in their amount of phylogenetic sig-
nal, resolving how to best measure phylogenetic signal is essential. 
In this study, we considered the two most common measures of phy-
logenetic signal, and our simulation results did not dispute any issues 
that were already known about these measures. For example, the 
precision to estimate �̂ is tree-dependent, with more taxa-rich trees 
required for better precision (Boettiger et  al.,  2012; Münkemüller 
et al., 2012). K does not scale linearly with increased phylogenetic 
signal strength, and its variance is positively associated with phy-
logenetic signal strength (Diniz-Filho et  al.,  2012; Münkemüller 
et  al.,  2012). Our simulation results confirmed these attributes. 
These issues make the comparison of phylogenetic signals chal-
lenging, even if only qualitatively comparing �̂ or K between traits, 
for the same phylogeny. That there has been no statistical test only 
makes inference more speculative.

In this study, we made three important advances for the com-
parison of phylogenetic signals among different traits. First, we 
demonstrated that a permutation-based procedure (RRPP) using 
the log-likelihood as a statistic is not only reliable but performs bet-
ter than a parametric test, especially for smaller trees. Second, we 
demonstrated that if the RRPP-log-likelihood permutation test is 
used, a test of �̂ and K are the same, provided that C is transformed 
by �̂ in the calculation of the GLS variance that is at the heart of 

the calculation of either statistic. Indeed, Blomberg et al. (2003) in-
troduced K as a statistic that had an associated permutation test, 
based on a distribution of MSE, not K, noting that statistical power 
would be higher if MSE was calculated from a transformed ver-
sion of C that resulted in better fit of the tree to the data. Because 
−MSE and ℒC are perfectly rank-order correlated for the same set 
of RRPP permutations, viewing �̂ and K as statistics that have differ-
ent hypothesis test outcomes is not necessary. Previous simulation 
studies have found differences between them, but did so by relying 
on adjudication of �̂ by a parametric likelihood ratio test (C trans-
formed by �̂), and K by a permutation test with no transformation of 
C (� = 1) (see, e.g. Molina-Venegas & Rodríguez, 2017; Münkemüller 
et al., 2012). Our work reveals that these differences were the result 
of the incommensurate transformation step, and not in test statis-
tic performance, per se. Third, having demonstrated that a test of 
phylogenetic signal is a test of the rarity of the observed ℒC in a 
distribution of random outcomes, generated by a null model of phy-
logenetic independence, we can measure phylogenetic signal an al-
ternative way: as the standardized location of the observed ℒC in the 
RRPP-generated distribution of random values (i.e. as an effect size). 
This alternative makes it possible to perform hypothesis tests for 
the comparison of the strength of phylogenetic signal across traits.

This third advance is important but perhaps unsettling. The 
convenience of �̂ or K is that a value of 0 should mean data devoid 
of phylogenetic signal, and a value of 1 should mean data have 
a phylogenetic signal that matches a BM model of evolutionary 
divergence. By contrast, a Z-score is a value measured in stan-
dard deviations that indicates a location in a normal distribution 
relative to expectation (mean), given a null model of phylogenetic 

F I G U R E  5  Z scores from Figure 3 (right column) after subtracting the expected value of Z, based on �̂ and N
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independence. As a measure of the degree of phylogenetic signal, 
Z, might feel less intuitively comfortable. However, this discom-
fort is perhaps predicated on one's definition of phylogenetic sig-
nal. For example, in a tree with 128 taxa (Figure 3), for a value of 
�̂ = 0.5, Z might range from 2 to 17. If �̂ is the definition of phylo-
genetic signal strength, the range of effect sizes suggest that Z is 
not a good effect size to consider. Conversely, an effect size Z = 5 
might be found to have �̂ range from 0.1 to 1.0. That is, if Z is the 
measure of phylogenetic signal, a corresponding �̂ indicates the 
tree transformation that best reveals the phylogenetic signal, not 
the amount of phylogenetic signal. However, the appeal of Z is 
that it allows a statistical comparison of the phylogenetic signals 
from multiple traits, but those traits might also have quite differ-
ent values of �̂ or K. The best analysis is probably one that sta-
tistically compares Z but also reports both �̂ and K, as these two 
statistics have important meaning: the optimized branch-length 
transformation and a ratio that expresses the relative amount of 
BM contribution to the GLS variance estimate, respectively. That 
is, one can report Z, �̂, K, and one p-value, and not have to view 

phylogenetic signal statistics as a means to an end for different 
statistical tests.

It is common for researchers to report ‘weak but significant’ 
phylogenetic signal when K is considerably less than 1 but the null 
hypothesis test is rejected. We also demonstrated with our simula-
tions that it is possible to find ‘significant’ phylogenetic signal when 
�̂ is small compared to a non-significant result when � is forced to 
be equal to 1 (compare plots between left and right columns of 
Figure 3). Our work demonstrates that it is not helpful to declare 
‘weak but significant’ phylogenetic signal (especially if not simulta-
neously reporting ‘strong but not significant’ phylogenetic signal 
by increasing �), based on �̂ or K values. However, we feel it is more 
appropriate to declare Z = 2 as weak but significant, compared 
with say, Z = 15 , which is strong and significant. Phylogenetic 
signal ‘strength’ can be viewed as measure of rarity to generate 
such a strong signal by chance, which Z describes well. Although 
�̂ and K are useful statistics, their ability to discern strong versus 
weak phylogenetic signal is questionable. Only Z, which is a statis-
tical effect size, affords this statistical interpretation. However, an 

F I G U R E  6   A Description of traits compared; B comparison of traits via standardized effect sizes (shown as locations in standardized 
sampling distributions, after transforming sampling distributions of log-likelihoods)
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interpretation of phylogenetic strength still cannot be made inde-
pendent of phylogeny size.

One less desirable outcome of our simulations is that Z (more 
precisely the slope between Z and �̂) was positively associated with 
N, the number of taxa represented in a tree. We were able to demon-
strate that the slope between Z and �̂ is predicted by N, such that 
one could find an expected value of Z, given N and �̂. When com-
paring the same or multiple traits between trees, this added step 
might help to better elucidate differences between a two-sample 
test of phylogenetic signal, especially if Z12 is significant, but it is 
not clear if the test result is because of differences in phylogenetic 
signal strength or tree size. This would not be a panacea, as it would 
also involve using �̂, which could vary between traits, but it is a tool 
that might assist inferences made about differences in phylogenetic 
signal involving multiple trees, or different Z scores also involving 
different �̂ transformations.

Although using Z scores for comparative analysis offers new 
opportunities, it also presents new challenges. Chief among the 
challenges that will have to be addressed is how to generalize 
the Z score as an effect size for multivariate data, especially if 
the number of variables precludes calculating log-likelihood. We 
see three possible approaches. First, like the generalization of 
the K statistic for multivariate data (Adams, 2014a), it might be 
possible to use the trace of the evolutionary rate matrix, rather 
than the matrix determinant, which would not be variable-
limited (for example, log�2 + 1

N
log |C| could be generalized by 

taking either the trace or determinant of R , the multivariate gen-
eralization of �2). Research demonstrating the adequacy of this 
approach would be needed, and certainly, the random outcomes 
could not be called log-likelihoods, but if the sampling distribu-
tions of log-likelihoods and modified statistics using traces were 
commensurate for comparable sets of variables, and yielded 
similar Z scores, then using an alternative generalization would 
be possible. Second, one could use a penalized-log-likelihood 
based on a regularization of near-singular or singular R matrices 
(Clavel et  al.,  2019). Because this approach assures a R matrix 
that is positive-definite and invertable, it also assures that logℒC 
can be estimated in every random permutation. Whether, the 
distribution of random logℒC obtained from RRPP, followed by 
regularization in each permutation, yields appropriate sampling 
distributions would remain to be seen. The statistical properties 
have been adjudicated using a penalized-likelihood framework 
for evaluating Wilks' Λ, with RRPP (Clavel & Morlon, 2020), so 
there is promise that this framework would also work for calcu-
lating multivariate Z scores.

The third potential solution is to use phylogenetically aligned 
component analysis (PACA; Collyer & Adams, 2021) as a dimension 
reduction method. The perils of data reduction before likelihood 
estimation have been clearly demonstrated (Uyeda et  al.,  2015), 
but this was for cases where the data reduction method (principal 
component analysis, PCA) did not find components specifically 
aligned to phylogenetic signal. PACA specifically aligns components 
to phylogenetic signal, such that greater phylogenetic signal—rather 

than variance—is predominantly found in the first few components. 
It might be possible to use a subset of data dimensions that con-
tain most or all phylogenetic signal to estimate pseudo-likelihoods. 
Again, it might not be sufficient to refer to a statistic calculated 
this way as model likelihood, but if random outcomes across many 
permutations produce a sampling distribution that yields similar Z 
values in fewer dimensions, it might be trusted for estimating Z for 
highly multivariate data.

Regardless of these three possible solutions, another consid-
eration is whether different variables could have different �̂ in the 
estimation of log-likelihoods; that is, can it be assumed traits evolve 
independently? In Appendix  2 of the Supporting Information, we 
outline a method for calculating log-likelihoods for multivariate data, 
both assuming common and independent � for traits. Model selec-
tion could be used to compare these two likelihoods to ascertain 
if traits evolve independently, and if so, the two-sample Z test de-
scribed here could be used to determine which traits have greater 
phylogenetic signal. However, appropriate optimization methods for 
multiple � should be rigorously researched, in addition to the statisti-
cal properties of different likelihood estimators, before solutions for 
multivariate traits are eagerly embraced.

Regardless of future challenges, the ability to estimate an ef-
fect size that can be used for hypothesis tests to compare phylo-
genetic signal in multiple traits, as a tool, is a boon for the PCM 
toolkit. We feel that measuring phylogenetic signal is more nu-
anced than using a single statistic, but adding Z to the suite of 
statistics used can help decipher between weak and strong phy-
logenetic signals, rather than misinterpreting values of �̂ or K. Our 
scope of investigation concerned BM models of evolutionary di-
vergence and one transformation parameter, Pagel's �. Pagel's � is 
generally considered to be most associated with phylogenetic sig-
nal, but one could also consider using RRPP with additional trans-
formation parameters, including � and � (Pagel, 1999). Because the 
transformation of the C matrix is an a priori step and this transfor-
mation is retained through random permutations, it would be easy 
to extend the RRPP-log-likelihood computations to additional C 
matrix transformations. Furthermore, RRPP could be used with 
alternative models of evolution (e.g. multi-rate Brownian, early 
burst, OU, AC/DC), recognizing that the simplifications we made 
from Equations 1 to 3 would not be the same. Random versions 
of V in Equation 1 would have to be calculated in each RRPP per-
mutation, accounting appropriately for parameters that are fixed 
or variable in each permutation. Insomuch as phylogenetic signal 
effect size (using Z) is a measure of the fit of tree to compara-
tive data for a BM model of evolution, any similar approach can 
be considered a model effect size for an alternative evolutionary 
model. Thus, there could be some appeal with using the RRPP-
log-likelihood effect size as a model selection criterion, especially 
because multiple models could be compared, not just assuming a 
null model of phylogenetic independence, but other null models 
as well. (For example, a single rate BM model could serve as null 
model for various multi-rate alternative models. Comparison of 
Z among the models, using both phylogenetic independence and 
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BM as different null models, could be valuable for inferring the 
best evolutionary model for trait data.)

In answering certain evolutionary questions, such as com-
paring the strength of phylogenetic signal, traditional parametric 
approaches offer challenges. First, the parameter space of � is 
bounded, and thus, a mixture of �2 distributions is required as a 
proxy for a sampling distribution (Molenberghs & Verbeke, 2007; 
Self & Liang,  1987; Verbeke & Molenberghs,  2003). Second, �2 
distributions are asymptotically appropriate for likelihood ratio 
statistics for very large sample sizes (Wilks,  1938), a situation 
rarely afforded when working with phylogenies. The permuta-
tion test we presented is not constrained to use a parametric 
probability distribution as a proxy, and is additionally capable 
of providing effect sizes, which are comparable across data-
sets to evaluate comparative hypotheses. Prior work (Adams & 
Collyer,  2018) has shown that empirical sampling distributions 
generated from RRPP match nearly perfectly the parametric   
F-distributions typically used in ANOVA, when data are simulated 
to match the assumptions of ANOVA. Based on our work here, 
one might speculate that RRPP-generated sampling distributions 
are better proxies for statistics without appropriate parametric 
sampling distributions and converge on parametric distributions 
in cases where sampling distribution solutions are tractable. 
When viewed from this perspective, permutation methods such 
as RRPP should not be considered mere analytical band-aids to 
be used for ill-conditioned datasets, or scenarios where standard 
tests are not applicable. Rather, they are equivalent to parametric 
procedures for ‘standard’ biostatistical problems and can super-
sede them in cases where parametric methods are not applicable. 
Thus, our perspective is that this work helps to continue to pave 
the way for advancement of PCMs as sets of tools that take ad-
vantage of the computational power of modern computers rather 
than force evolutionary biology questions into limited traditional 
statistics applications.
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